Smooth, aggregate-free self-assembled monolayer deposition of silane coupling agents on silicon dioxide.

نویسندگان

  • Roger M Diebold
  • David R Clarke
چکیده

Silane coupling agents (SCAs) are notorious for aggregating during deposition on oxide substrates, leading to nonuniform surface morphologies. To ameliorate this problem, we describe a vapor-phase deposition technique for silane coupling agents employing a spin-coated perfluoropolyether (PFPE) diffusion barrier that facilitates the formation of smooth, aggregate-free self-assembled monolayers (SAMs). Samples fabricated using PFPE barrier layers yielded SAMs exhibiting similar water contact angles, reduced water contact angle hysteresis, and a 2-fold reduction in rms roughness relative to those without a barrier. X-ray photoelectron spectroscopy confirms that the barrier layer can be completely removed after deposition, leaving behind a smooth monolayer. A basic analysis of the agglomerate separation ability of the barrier layers is discussed to understand the critical parameters involved. Generalized guidelines for selecting barrier materials are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covalent attachment of synthetic DNA to self-assembled monolayer films.

The covalent attachment of thiol-modified DNA oligomers; to self-assembled monolayer silane films on fused silica and oxidized silicon substrates is described. A heterobifunctional crosslinking molecule bearing both thiol- and amino-reactive moieties was used to tether a DNA oligomer (modified at its terminus with a thiol group) to an aminosilane film formed on silica surfaces. A variety of ami...

متن کامل

Angle-resolved XPS analysis and characterization of monolayer and multilayer silane films for DNA coupling to silica.

We measure silane density and Sulfo-EMCS cross-linker coupling efficiency on aminosilane films by high-resolution X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements. We then characterize DNA immobilization and hybridization on these films by (32)P-radiometry. We find that the silane film structure controls the efficiency of the subsequent steps toward DNA hybr...

متن کامل

Effect of silane coupling agent chemistry on electrical breakdown across hybrid organic-inorganic insulating films.

Dielectric breakdown measurements were conducted on self-assembled monolayer (SAM)/native silicon oxide hybrid dielectrics using conductive atomic force microscopy (C-AFM). By depositing silane coupling agents (SCAs) through a diffusional barrier layer, SAM roughness was decoupled from chemistry to compare the chemical effects of exposed R-group functionality on dielectric breakdown. Using Weib...

متن کامل

Non-Amontons behavior of friction in single contacts.

We report on the frictional properties of a single contact between a glassy polymer lens and a flat silica substrate covered either by a disordered or by a self-assembled alkylsilane monolayer. We find that, in contrast to a widely spread belief, the Amontons proportionality between frictional and normal stresses does not hold. Besides, we observe that the velocity dependence of the sliding str...

متن کامل

Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer.

By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO2 and CH3NH3PbI3, resulting in optimized interface band alignments and enhanced charge lifetime. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 28 44  شماره 

صفحات  -

تاریخ انتشار 2012